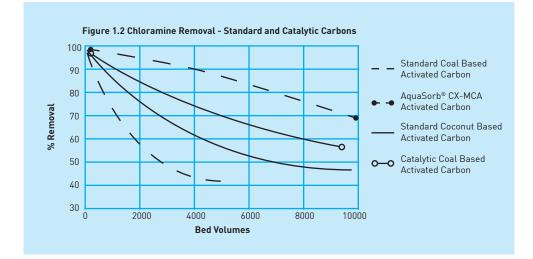


Treatment for Monochloramine Using Activated Carbon

Technical Paper | December 2007


Treatment for Monochloramine Using Activated Carbon

In order to reduce the formation of disinfection by-products (DBP) from the reaction of chlorine with residual organics in potable water, the application of alternative disinfectants has become increasingly widespread. Although ~200 times less effective than chlorine as a sterilant, monochloramine has emerged as one of the leading alternative disinfectants for municipal water supplies. Monochloramine offers two advantages. Firstly, it is less reactive avoiding the creation of DBP's. Secondly, it is a more persistent disinfectant remaining in the public water supply throughout the distribution system up to the faucet. However, its persistence in the supply and its tendency to form breakdown products below a pH of 7.5 causes taste and odour issues for consumers. This paper details the relative efficiency of commercial activated carbon in the removal of monochloramine and describes the enhanced performance exhibited by special "catalytic" carbons. The paper also describes the relative stability of these catalytic carbons when subject to demands of continuous use providing direction on activated carbon material selection to water treatment professionals faced with monochloramine removal issues.

Removal of Monochloramine by Activated Carbons

The stoichiometry of the dechloramination reactions on carbon are well known and are shown in Figure 1.1 The dechloramination efficiency of various commercial activated carbons including specialised "catalytic" products was examined utilising extended life column testing. A 25-cm³ bed of GAC was set up in a 2.5-cm diameter column. Flow rate was maintained at a target flow of 3.3 bed volumes per minute. Challenge water was prepared with reference to ANSI-NSF 42-2002 chloramine testing protocol at pH 9, ensuring that monochloramine was the principal chloramine species at a target concentration of ~3mg/L chlorine. Influent and effluent waters were analysed for monochloramine directly using an indophenol colorimetric method.

Figure 1.2 shows the relative dechloramination performance of a standard coal and coconut based activated carbon, catalytic coal based carbon, and Jacobi Carbons catalytic coconut based activated carbon, AquaSorb[®] CX-MCA. Comparison of the activated carbons show that AquaSorb[®] CX-MCA is superior to all activated carbons for the removal of chloramine.

Reduction $C^* + NH_2Cl + H_2O > NH_3 + H^+ + Cl^- + C^*O$

Catalytic Decomposition $C*0 + 2 NH_2Cl > C* + 2H^+ + 2 Cl^- + H_20 + N_2$

Table 1.1 Release of Fines by of Catalytic Carbons

Suspended Solids (mg/L)

Day4

250

117

288

147

Day5

284

128

343

140

Day6

239

71

271

82

Day3

216

118

241

140

Turbidity (FAU)

Day2

382

102

406

113

Relative Stability of Carbons

One of the additional benefits of a catalytic coconut based activated carbon is its stability to chemicals. When subject to sustained chemical attack by aqueous phase oxidising chemical, such as chloramines, the surface of activated carbon degrades releasing fines into treated water. Table 1.1 shows the results of measurements of the suspended solids and turbidity content in the water from the daily backwash cycles of AquaSorb[®] CX-MCA activated carbon beds during the six days of continuous running required to attain 30000 B.V. Comparison of the data in Table 1.1 shows AquaSorb[®] CX-MCA produces significantly less backwash fines than the coal based carbon as a direct result of mechanical stability of a coconut shell.

Summary

- Activated carbon is an effective media for the removal of monochloramine with coconut-based products were shown superior to coal based products.
- Specialized "catalytic" products are superior to standard grades offering almost twice the monochloramine removal capacity.
- For specialized "catalytic" carbon products, coconut carbons showed superior chloramines removal performance and mechanical stability compared to competitors coal based products.

SALES OFFICES (cont.)

United Kingdom

Jacobi Carbons Ltd. Croft Court, Moss Estate Leigh, Lancs, WN7 3PT

Tel: +44 1942 670 600 Fax +44 1942 670 605 infouk@jacobi.net

Malaysia

Jacobi Carbons (Asia) Sdn Bhd 1-04-18, Krystal Point Corporate Park Jalan Tun Dr. Awang, 11900 Bayan Lepas, Penang

Tel: +60 4 643 9828 Fax: +60 4 644 3928 infoasia@jacobi.net

SALES OFFICES (cont.)

Finland Jacobi Carbons AB (SS) Ruoholahdenkatu 8 SF-00180 Helsinki

Tel: +358 9 643602 Fax: +358 9 642900 infofin@jacobi.net

Switzerland

Carbon

Coal

Based

Jacobi

Coal

Based

Jacobi

CX-MCA

CX-MCA

Jacobi Carbons AG Rheinweg 5 CH-8200 Schaffhausen

Tel: +41 52 647 30 00 Fax: +41 52 647 30 09 infoch@jacobi.net

CAUTION Activated carbon is a strong oxidizing agent and can remove oxygen from air under wet or humid conditions. Care should be taken when entering confined spaces where wet activated carbon is present. Ensure the use of correct breathing apparatus. Material Safety Data Sheets should be consulted for further details on procedures in the event of contact with activated carbon.

NOTICE Due to the progressive nature of Jacobi Carbons Group and the continually improving design and performance of our products, we reserve the right to change product specifications without prior notification. The information contained in this datasheet is intended to assist a customer in the evaluation and selection of products supplied by Jacobi Carbons. The customer is responsible for determining whether products and the information contained in this document are appropriate for customer's use. Jacobi Carbons assumes no obligation or liability for the usage of the information in this datasheet, no guarantees or warranties, expressed or implied, are provided. Jacobi Carbons disclaims responsibility and the user must accept full responsibility for performance of systems based on this data.

WORLDWIDE DISTRIBUTORS A diverse network of agents, strategically located around the world. Please contact any Jacobi Carbons office to locate your nearest distributor. AquaSorb*, EcoSorb*, GoldSorb*, ColorSorb*, DioxSorb*, AddSorb* and Jacobi are registered trademarks of Jacobi Carbons. © Jacobi Carbons, 2007.

CORPORATE OFFICE

Sweden

Jacobi Carbons AB Bredbandet 1, Varvsholmen SE-392 30 Kalmar

Tel: +46 480 417550 Fax: +46 480 417559 info@jacobi.net www.jacobi.net

SALES OFFICES

Germany

Jacobi Carbons GmbH Feldbergstrasse 21 D-60323 Frankfurt/Main

Tel +49 69 719107-0 Fax +49 69 719107-20 infode@jacobi.net

United States

Jacobi Carbons, Inc. 1518 Walnut Street, 18th Floor Philadelphia, PA 19102

Tel: (215) 546-3900 Fax: (215) 546-9921 infous@jacobi.net