Conversion Tables

Volume

1 U.S. Gallon	$231.0 \mathrm{in}^{3}$ $0.137 \mathrm{ft}^{3}$ 3.785 liters .00379 meters ${ }^{3}$ 0.833 Imp gal 0.23842 -gal barrel
1 Imperial Gallon	1.2 U.S. gal
1 Cubic Foot	$\begin{aligned} & \text { 7.48 U.S. gal } \\ & 0.0283 \text { meter }^{3} \end{aligned}$
1 Liter	0.2642 U.S. gal
1 Cubic Meter	$\begin{gathered} 35.314 \mathrm{ft}^{3} \\ 264.2 \mathrm{U} . \mathrm{S} . \mathrm{gal} \end{gathered}$
1 Acre Foot	$\begin{array}{r} 43,560 \mathrm{ft}^{3} \\ 325,829 \text { U.S. gal } \end{array}$
1 Acre Inch	$\begin{aligned} & 3,630 \mathrm{ft}^{3} \\ & 27,100 \text { U.S. gal } \end{aligned}$

Capacity

1 Cubic Foot Per Second (2nd foot) (C.F.S.)	449 gpm
1 Acre Foot Per Day	227 gpm
1 Acre Inch Per Hour	454 gpm
1 Cubic Meter Per Minute	264.2 gpm
$1,000,000$ Gal. Per Day	595 gpm

Head

1 Pound Per Square Inch (p.s.i.)	2.31 ft . head of water 2.04 in. mercury $0.07 \mathrm{~kg} / \mathrm{cm}^{2}$
1 Foot of Water	$0.433 \mathrm{lb} / \mathrm{in}^{2}$.885 in. mercury
1 Inch of Mercury (or vacuum)	1.132 ft of water
1 Kilogram Per Square Cm	$14.22 \mathrm{lb} / \mathrm{in}^{2}$
1 Atmosphere (at sea level)	$14.7 \mathrm{lb} / \mathrm{in}^{2}$ 34.0 ft of water 10.35 meters of water
1 Meter of Water	3.28 feet of water

To Find Capacity of a Tank or Cisten

Diameter of Tank	$\times .7854 \times$	Height	Capacity
In Feet Squared		of Tank In Feet	

Horsepower

```
1 H.P. Equals ..
    .746 kilowatts of }746\mathrm{ watts
    33,000 ft lbs per minute
    550 ft lbs per second
```


H.P. Input Equals ..

Horsepower input to motor 1.34 x kilowatts input to motor

Water H.P. Equals ...
Horsepower required to lift water at a definite rate to a given distance assuming 100% efficiency
G.P.M. x total head (in ft.) 3960

Brake H.P. Equals
H.P. delivered by motor H.P. required by pump H.P. input x motor efficiency $1.34 \times$ KW input x motor efficiency Water horsepower Pump efficiency G.P.M. x total head (ft.) $3960 \times$ pump efficiency G.P.M. x total head (lbs/in ${ }^{2}$) 103,000 x pump efficiency

Efficiency

Efficiency Equals	$\frac{\text { Power Output }}{\text { Power Input }}$
Motor Efficiency Equals	$\frac{\text { H.P. Output }}{\text { K.W. input } \times 1.34}$
Pump Efficiency Equals	$\frac{\text { G.P.M. } \times \text { total head (ft.) }}{103,000 \times \text { B.H.P. }}$

Electric Power

AC	$=$ Alternating Current Power
DC	$=$ Direct Current
E	$=$ Volts
I	$=$ Amperes
W	$=$ Watts
KW	$=$ Kilowatts
Apparent Power	$=$ Volts x amperes = Voltamperes
Apparent Power	$=$ E I
Useful Power W	$=$ I \times P.F.
Power Factor	$=$ ratio of useful power to apparent power
Power Factor	$=$ W $=$ PF
KW Hr.	$=$ Kilowatt Hour
Single Phase	$=$ E \times I \times PF
Power W	
3 Phase Power W	$=1.73 \times$ E \times I \times PF
Where E	$=$ Average voltage between phases
I	$=$ Average current in each phase

Have questions? Call us at 888-600-5427 and speak with one of our WQA Certified Master Water Specialists.
Visit us online www.CleanWaterStore.com.
Email us at info@cleanwaterstore.com

